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Combined Parametric–Nonparametric Identification of
Hammerstein Systems

Zygmunt Hasiewicz and Grzegorz Mzyk

Abstract—A novel, parametric–nonparametric, methodology for Ham-
merstein system identification is proposed. Assuming random input and
correlated output noise, the parameters of a nonlinear static characteristic
and finite impulse-response systemdynamics are estimated separately, each
in two stages. First, the inner signal is recovered by a nonparametric regres-
sion function estimation method (Stage 1) and then system parameters are
solved independently by the least squares (Stage 2). Convergence proper-
ties of the scheme are established and rates of convergence are given.

Index Terms—Convergence analysis, least squares, nonparametric re-
gression, parameter estimation.

I. INTRODUCTION

The methods elaborated for the identification of the Hammerstein
system (Fig. 1) can be roughly divided into two categories: parametric
and nonparametric ones. The former assume prior knowledge of the
system components up to a finite number of parameters (e.g., a poly-
nomial form of the nonlinear static characteristic �(u);; see, for ex-
ample, [1] and the references therein) while the latter do not impose
any specific structure on the system description (e.g., [2]–[4]). In this
note, a new parametric–nonparametric technique is proposed to solve
the Hammerstein system identification task. Like in a parametric set-
ting, we assume that the nonlinear static characteristic �(u) is known
with accuracy to the parameters and, further, that the linear dynamic
block is a finite impulse-response (FIR) filter of the known order. In
the proposed approach the identification is performed in two stages.
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Fig. 1. Hammerstein system.

First, exploiting a nonparametric regression function estimation tech-
nique, the unmeasurable inner signal fwkg is estimated from the mea-
surement data (uk; yk). Then, the least squares method is used to the
independent estimation of the two subsystems parameters using, re-
spectively, the pairs (uk; ŵk) and (ŵk; yk) where fŵkg is the estimate
of the interaction sequence obtained by a nonparametric method. As
compared to the parametric identification techniques developed to date,
the potential advantages of the approach are that: 1) we get simple esti-
mates of both subsystems, given by the explicit formulas; 2) the routine
is not using any type of alternate updating; 3) the method works with
systems having nonpolynomial static characteristics; 4) the algorithm
operates efficiently for both white and colored noise, without the need
of recovering the noise model; 5) each part of the system is identified
separately making the estimates robust against lack or falsity of a priori
information about the other part; and 6) convergence properties are es-
tablished and rates of convergence are given. We refer to [5]–[9] and the
references cited therein for representative examples of the parametric
identification methods worked out for the Hammerstein system and to
[1] for a comprehensive overview of the subject.

II. STATEMENT OF THE PROBLEM

In the Hammerstein system in Fig. 1, uk; yk , and zk are respectively
the input, output, and noise processes at instant k, andwk is the internal
signal (interaction input) not accessible for measurement (see [1] for a
discussion). We assume the following.
Assumption 1: The nonlinear static characteristic �(u) is known

up to a finite number of parameters c1; . . . ; cm and is a generalized
polynomial [10]

�(u) =

m

l=1

clfl(u) (1)

where f1(u); . . . ; fm(u) is a set of known linearly independent basis
functions, such that

jfl(u)j � pmax; l = 1; 2; . . . ;m (2)

some pmax > 0 for u in the operation region juj � umax (see As-
sumption 3).
Assumption 2: Linear dynamics is an FIR filter

vk =

s

i=0


iwk�i (3)

some finite known order s, with the unknown impulse response
f
ig

s

i=0.
Assumption 3: The input signal fukg is a bounded i.i.d. random

process, jukj � umax, some umax > 0.
Assumption 4: The output noise fzkg is a correlated process gen-

erated from a bounded zero-mean white noise f"kg (E"k = 0; j"kj �
"max, some "max > 0) by an asymptotically stable linear filter with
unknown impulse response f!ig1i=0(

1

i=0
j!ij < 1)

zk =

1

i=0

!i"k�i (4)
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independent of the input signal fukg. Consequently, fzkg is a zero-
mean and bounded process; Ezk = 0; jzkj � zmax where zmax =
"max

1

i=0
j!ij < 1.

Assumption 5: �(u0) is known at some point u0 and 
0 = 1.
The last requirement is strictly connected with the method presented

in the note and will be explained in Section III.
Owing to (1), (3), and the relationship wk = �(uk), we get

wk = �T (uk)c yk = #Tk 
 + zk (5)

where c = (c1; c2; . . . ; cm)T ; 
 = (
0; 
1; . . . ; 
s)
T ; �(uk) =

(f1(uk); f2(uk); . . . ; fm(uk))
T and #k = (wk; wk�1; . . . ; wk�s)

T .
Our objective is to recover unknown c and 
 using input–output
measurements f(uk; yk)gMk=1 of the whole system.

III. BACKGROUND OF THE APPROACH

Denote �N = (�(u1); �(u2); . . . ; �(uN ))T ; WN =
(w1; w2; . . . ; wN )T and �N = (#1+s; #2+s; . . . ; #N+s)

T ; YN =
(y1+s; y2+s; . . . ; yN+s)

T , and ZN = (z1+s; z2+s; . . . ; zN+s)
T .

From (5), we have

WN = �N c YN = �N
 + ZN (6)

Hence, we can get the following least squares solution for the parameter
vector c:

c = �TN �N
�1

�TN WN (7)

and the least squares estimate of the vector 



̂N = �T
N�N

�1

�T
NYN (8)

(weakly consistent in the problem in question [11]), provided that �N
and �N are of full-column rank. To this end let us assume that N0 �
m = dim c and N � s + 1 = dim 
. The obvious difficulty in car-
rying out this simple approach is that the wk’s entering WN and �N

cannot be measured. A way to overcome this drawback and utilize the
solutions (7) and (8) is to recover the unknown wk’s from the mea-
surement data f(uk; yk)gMk=1 and to use the obtained estimates ŵk;M
instead ofwk. Observing, however, that [see (3) and (4), along with the
relations wk = �(uk) and yk = vk + zk]

yk = 
0�(uk) +

s

i=1


i�(uk�i) +

1

i=0

!i"k�i

or, equivalently

yk=(
0�(uk) + d) +

s

i=1


i[�(uk�i)�E�(u1)]+

1

i=0

!i"k�i (9)

where d = E�(u1)
s

i=1

i and viewing the tail in (9) as the aggre-

gate zero-mean output noise. We realize that only scaled and shifted
version �b(u) = 
0�(u) + d of the nonlinear characteristic �(u) is
at most accessible from the input–output data f(uk; yk)g. Hence, only
scaled and shifted values 
0wk + d of the interactions wk = �(uk)
can be recovered in a general case. To get consistent estimates ŵk;M
of wk , we require the technical Assumption 5. Then, for 
0 = 1, the
bias d can be clearly eliminated by taking, for a given uk , the estimate
ŵk;M = �̂b;M(uk)� �̂b;M(u0) + �0 where �̂b;M(u) is an estimate

of the characteristic �b(u). While the knowledge of �(u) in at least
one point u0; �(u0) = �0; is necessary for removing the bias (unless
E�(u1) = 0 or s

i=1

i = 0) and this requirement cannot be dropped

or relaxed, the requirement that 
0 = 1 can be weakened to the demand
that 
0 6= 0 as the parameter sets (
0c; (1=
0)
) and (c; 
) are equiv-
alent (indistinguishable) from the input–output data point of view for
each 
0 6= 0 [see (9) and [12] and [13] for the discussion of this issue.]
Introducing, in particular, the regression function

R(u) = Efyk j uk = ug (10)

we get for 
0 = 1 that R(u) = �(u) + d [cf. (9) and Assumptions
3 and 4] and further R(u) � R(u0) = �(u) � �(u0) or �(u) =
R(u) � R(u0) + �(u0). For technical reasons, without any loss of
generality, we assume, henceforth, u0 = 0 and �(0) = 0 getting

�(u) = R(u)�R(0): (11)

The fundamental formula (11) relating the nonlinearity �(u) with the
regression functionR(u)was given in [3]. We note thatR(u) = �b(u).

Equations (10) and (11) along with wk = �(uk) suggest that esti-
mation of interactions wk from the data f(uk; yk)gMk=1 can in partic-
ular be performed by a nonparametric regression function estimation
method, without the use of parametric prior knowledge of the system
components. The class of nonparametric regression function estimates
elaborated for the Hammerstein system to date comprises kernel esti-
mates [3], [14], orthogonal series estimates [2], and wavelet estimates
[15], [4]. For a general treatment of nonparametric regression function
estimation methods, see, for example, [16]–[19].
Remark 1: The idea of recovering unmeasurable inner signal in the

Hammerstein and Wiener system has been recently realized in [12],
[13] by using frequency domain method and a nonparametric method
to support the recovery from independent data of the linear regression
parameters was used in [20].

IV. TWO-STAGE ESTIMATION OF NONLINEARITY PARAMETERS

Due to the aforementioned information, we propose the following
two-stage estimation procedure of vector c.
Stage 1 (Nonparametric): Using input-output data f(uk; yk)gMk=1,

for a set of input points fun;n = 1; 2; . . . ; N0g such that M >
N0 � m = dim c and �N = (�(u1); �(u2); . . . ; �(uN ))T is
of full-column rank, estimate the corresponding interactions fwn =
�(un);n = 1; 2; . . . ; N0g as

ŵn;M = R̂M(un)� R̂M(0) (12)

where R̂M(u) is a nonparametric estimate of the regression function
R(u), computed for u 2 f0; un;n = 1; 2; . . . ; N0g. Here, the esti-
mation points fung

N
n=1 can be the measured input data or the points

freely selected by the experimenter; we do not distinguish these two
situations because of no formal importance of the difference.
Stage 2 (Parametric): Compute the estimate of parameter vector c

as [cf. (7)]

ĉN ;M = �TN �N
�1

�TN ŴN ;M (13)

where �N and ŴN ;M = (ŵ1;M ; ŵ2;M ; . . . ; ŵN ;M)T are estab-
lished in Stage 1.
Remark 2: The requirement that rank�N = m = dim c can

be fulfilled because of linear independence of f1(u); . . . ; fm(u)
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and the fact that the estimation points un in Stage 1 may in par-
ticular be selected in an arbitrary manner. Such a condition is
for instance automatically satisfied if N0 � m; u1; u2; . . . ; uN
are distinct points, and f1(u); . . . ; fm(u) in (1) is a Tchebycheff
system (i.e., satisfies the Haar condition). Appropriate examples are
f1; u; u2; . . . ; um�1g [which yields standard polynomial charac-
teristic in (1)], f1; sinu; sin 2u; . . . ; sin(m � 1)ug (on [0; 2�]) or
fe� u; e� u; . . . ; e� ug and nondegenerate linear combinations of
these functions [10].

Defining the estimation error in Stage 1 as &n;M = ŵn;M �wn and
including (5), we see that Stage 2 may be considered as the identifi-
cation of a static element ŵn;M = �T (un)c + &n;M from the “data”
f(un; ŵn;M)gNn=1 by means of least squares. We note that estimation
of vector c in (13) is performed without the use of a priori knowledge
of the system dynamics, in contrast to the alternate updating methods
[5], [6], [9].

The following theorem holds.
Theorem 1: If for u 2 f0; un;n = 1; 2; . . . ; N0g it holds that

R̂M(u)! R(u) in probability asM !1 (Stage 1) then ĉN ;M ! c
in probability as M ! 1 (Stage 2).

Proof: See Appendix A.
Remark 3: Any kind of probabilistic convergence can be considered

in Theorem 1. We examine convergence in probability as this particular
type of convergence is usually studied in the convergence analysis of
nonparametric regression function estimates for Hammerstein systems
(see [2], [3], [14], and [4]).

In the next theorem establishing asymptotic rate of convergence of
the estimate ĉN ;M , for a sequence of random variables f&Mg and pos-
itive number sequence faMg convergent to zero, &M = O(aM) in
probability means that dM &M=aM ! 0 in probability asM !1 for
any number sequence fdMg tending to zero [14, p. 140].

Theorem 2: If in Stage 1 jR̂M(u)� R(u)j = O(M�� ) in proba-
bility as M ! 1 for each u 2 f0; un;n = 1; 2; . . . ; N0g then also
kĉN ;M � ck = O(M�� ) in probability as M ! 1.

Proof: See Appendix B.
As we see, in the method the rate of convergence for estimating

vector c is determined by the nonparametric rates for the regression
function. Since, as is well known, for each nonparametric method 0 <
� < 1=2 (e.g., [17]), the rate O(M�� ) is in general of slower order
than the best possible parametric rate of convergence O(M�1=2) in
probability. However, for polynomial and other smooth nonlinearities
the convergence rate can be made arbitrarily close to O(M�1=2) by
applying nonparametric estimates being able to adapt to smooth func-
tions, e.g., wavelet estimates [15], [4].

V. TWO-STAGE IDENTIFICATION OF LINEAR DYNAMICS

Considering (8), we propose similar two-stage scheme to estimate 
.
Stage 1 (Nonparametric): Using input–output measurement

data f(uk; yk)gMk=1, estimate the entries fwt�r; t = n + s;n =
1; 2; . . . ; N ; r = 0; 1; . . . ; sg of �N by a nonparametric method, i.e.,
as ŵt�r;M = R̂M(ut�r)� R̂M(0) where fut�rg are the input data
points corresponding to the output measurements fytgN+s

t=1+s collected
in vector YN [see (6)] and R̂M(u) is a nonparametric estimate of the
regression function R(u) computed for u 2 f0; ut�r; t = n + s;
n = 1; 2; . . . ; N ; r = 0; 1; . . . ; sg [cf. (10)–(12)].

Stage 2 (Parametric): Compute [see (8)]


̂N;M = �̂T
N;M�̂N;M

�1

�̂T
N;MYN (14)

where �̂N;M = (#̂1+s;M ; #̂2+s;M ; . . . ; #̂N+s;M)T ; #̂t;M =
(ŵt;M ; ŵt�1;M ; . . . ; ŵt�s;M)T and YN is a noisy output vector.

In Stage 1, we assume that M � s > N � s + 1 = dim 
. We
accentuate that estimation of 
 in (14) is independent of estimating
parameter vector c of the static subsystem.
Remark 4: Recalling that the “input” data are contaminated by

the additive (estimation) errors, ŵt�r;M = wt�r + &t�r;M (cf.
Section IV), we note that recovering of 
 from the data (�̂N;M ; YN)
is in fact the errors-in-variables estimation problem. This is unlike the
aforementioned [20], where input data are accurate and only output
measurements are corrupted by the noise (white).

The following theorem holds.
Theorem 3: If for u 2 f0; ut�r; t = n + s;n = 1; 2; . . . ; N ; r =

0; 1; . . . ; sg the estimate R̂M(u) is bounded and the asymptotic non-
parametric estimation error in Stage 1 behaves like

jR̂M(u)�R(u)j = O(M�� ) in probability (15)

then 
̂N;M ! 
 in probability in Stage 2 provided that N;M ! 1
and NM�� ! 0.

Proof: See Appendix C.
The condition NM�� ! 0 is fulfilled if M = const � N (1+�)=� ,

or equivalently N = const �M�=(1+�) , any � > 0. It is noteworthy
that since in general 0 < � < 1=2 (cf. Section IV), to get consis-
tency of the estimate 
̂N;M far more data points f(uk; yk)gMk=1 must
be used in Stage 1 for nonparametric estimation of interactions fwt�rg
than the “observations” f(#̂t;M ; yt)gN+s

t=1+s in Stage 2 for computing

̂N;M . This can be explained by the necessity of effective reduction of
the ‘input’ errors in #̂t;M ’s and slower convergence of nonparametric
methods. From the data length M viewpoint, small � are clearly pre-
ferred. In contrast, � � 1=2 are desirable from the 
̂N;M convergence
rate point of view.
Theorem 4: For M � N (1+�)=� , equivalently N � M�=(1+�);

� > 0, the asymptotic convergence rate in Stage 2 is k
̂N;M � 
k =
O(N�min(1=2;�)) in probability.

Proof: See Appendix D.
If � � 1=2 we attain for the estimate 
̂N;M the best possible para-

metric rate of convergence O(N�1=2) in probability (w.r.t. N ). This
means that for � � 1=2 the influence of the input (estimation) errors in
#̂t;M ’s on the accuracy of the estimate 
̂N;M is dominated by the stan-
dard effect of the output measurement noise. In the case of � < 1=2,
we get slower guaranteed convergence rate of order O(N��).

VI. EXAMPLE

Let us use, for example, in Stage 1 of the schemes the kernel regres-
sion estimate studied in [3] and [14], i.e.,

R̂M(u) =

M
k=1 ykK

u�u
h(M)

M
k=1K

u�u
h(M)

(16)

where K(u) is a kernel function and h(M) is a bandwidth parameter.
Standard examples are K(u) = I[�0:5;0:5](u); (1 � juj)I[�1;1](u)
or (1=

p
2�)e�u =2 and h(M) = const �M�� with a positive con-

stant and 0 < � < 1; see [19]. Owing to the convergence results
presented there, we find out that for each of the aforementioned K(u)
it holds that R̂M(u) ! R(u) in probability as M ! 1, and that
the convergence takes place at every u 2 Cont(�; �), the set of con-
tinuity points of �(u) and �(u), at which �(u) > 0 where �(u) is
a probability density function of the system input (assumed to exist).
Taking in particular the Gaussian kernel K(u) = (1=

p
2�)e�u =2

and, according to the recommendation in [14], h(M) � M�1=5 we
get the convergence rate jR̂M(u) � R(u)j = O(M�2=5) in proba-
bility and hence kĉN ;M � ck = O(M�2=5) in probability (� = 2=5)
in Stage 2 for a static element, provided that �(u) and �(u) are at



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 8, AUGUST 2004 1373

Fig. 2. True versus estimated static characteristic and the “data” points
(u ; ŵ ) (bold-faced) computed in Stage 1 by the kernel nonparametric
method for (a) M = 100 and (b) M = 500 measurement data.

u 2 f0; un;n = 1; 2; . . . ; N0g at least two times continuously differ-
entiable functions and �(u) > 0 there (cf. [3], [14], and Theorem 2). As
regards a dynamical part, since in the problem in question the estimate
(16) with the Gaussian kernel is bounded (see (5) and Assumptions
1–4), using this estimate we get in Stage 2 the convergence 
̂N;M ! 

in probability asN;M !1 provided thatM � N5(1+�)=2, or equiv-
alently N � M2=5(1+�); � > 0 (cf. Theorem 3). For � = 1=2 the
asymptotic convergence rate is k
̂N;M � 
k = O(N�1=2) in proba-
bility (Theorem 4). The behavior of the estimates ĉN ;M and 
̂N;M for
small and moderate number of data is demonstrated in the simulation
example.

VII. SIMULATION STUDY

The Hammerstein system from (5), with nonpolynomial static
characteristic, was simulated for m = 3 and s = 2 taking
�(uk) = (uk; u

2
k; sinuk)

T ; c = (2; 1;�20)T ; 
 = (1;�1; 1)T , and
zk = 2�1zk�1 + "k , i.e., f!i = 2�ig1i=0 [cf. (4)]. Random input and
white noise processes fukg and f"kg were generated according to
the uniform distributions uk � U [�5; 5] and "k � U [�"max; "max]
(cf. Assumptions 3 and 4) where "max was changed as to give the
noise-to-signal ratio NSR = (zmax=vmax) � 100% equal to 1%,
5%, and 10%, where zmax = "max

1

i=0 2
�i = 2"max is the noise

magnitude (Assumption 4) and vmax = wmax
2
i=0 j
ij = 3wmax

with wmax = maxu 2[�5;5] j�T (uk)cj [cf. (3) and (5)] is the magni-
tude of the noiseless output signal; in our experiment vmax = 165.
To estimate interactions in Stage 1, the nonparametric kernel esti-
mate outlined in Section VI was applied, with the Gaussian kernel
K(u) = (1=

p
2�)e�u =2 and the globally optimal bandwidth

h(M) = e("max)M
�1=5; e("max) = (8:873+ 0:006"2max)

1=5, com-
puted according to the rule recommended in [14, Sec. 8, p. 145]. For

Fig. 3. Average relative estimation error versus number of data for (a) vector
c (dashed line: 2S-LS-SVD algorithm) and (b) vector 
 .

the identification of the static element we assumed N0 = 4 and the es-
timation points un in Stage 1 were chosen arbitrarily as u1 = �3:75;
u2 = �1:25; u3 = 1:25, and u4 = 3:75. For the identification of
the dynamic part, we put M = d0:5 � N5(1+0:1)=2e = d0:5 � N2:75e,
i.e., N = d(2M)1=2:75e = d(2M)0:36e (cf. Section VI).
For each number M of data the experiment was repeated
P = 10 times, and accuracy of the estimates ĉN ;M and

̂N;M was evaluated using the average relative estimation error
�� (N;M) = [(1=P ) P

p=1 k�̂(p)N;M � �k22=k�k22] � 100% where �̂(p)N;M

is the estimate of � 2 fc; 
g obtained in the pth run, and k � k2 is the
Euclidean vector norm. Exemplary results of two-stage identification
of the nonlinear static characteristic for M = 100 and M = 500
measurement data and NSR = 5%, along with the true characteristic
and the “data” points f(un; ŵn;M)gN =4

n=1 (bold-faced) computed in
Stage 1 by the kernel method, are visualized for a single trial in Fig. 2.
The bold-faced points are the only outcome of the nonparametric
estimation in the scheme. Thanks to the parametric prior knowledge of
the characteristic we are able to derive from this small set of data the
models �̂(u) = �T (u)ĉN ;M (N0 = 4) of good visual quality in the
whole range of inputs (particularly for M = 500), which is beyond
the reach of any nonparametric method.

The estimation error of vector c and 
 is plotted in Fig. 3. The sim-
ulation results show convergence of the estimates ĉN ;M and 
̂N;M
with growing number M of measurement data. For comparison, the
estimate of vector c was also computed by using the optimal two-stage
least-squares SVD (2S-LS-SVD) algorithm [8], after obvious adap-
tation to Hammerstein systems. We assumed however incorrect prior
knowledge of the system dynamics taking erroneously in the compu-
tations the dynamics order s = 1 instead of the true s = 2. Such a
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disagreement has of course no influence on the estimate ĉN ;M in our
method. The average relative estimation error for the 2S-LS-SVD al-
gorithm and NSR = 5% is depicted in Fig. 3(a) with dashed line. As
we see, the 2S-LS-SVD method gives in such circumstances biased es-
timate of c, with about 3% systematic error.

VIII. CONCLUSION

Two stage parametric–nonparametric schemes for separate identi-
fication of parameters of a nonlinear static and linear FIR dynamic
part of Hammerstein system have been proposed and examined. In
each of the schemes, only standard nonparametric regression and least
squares computations are needed. Because of parametric prior knowl-
edge the estimated models are provided in the explicit form. For a static
part, the method works with nonpolynomial characteristics, thus ex-
tending the standard range of parametric methodology. The strength of
the approach is complete decoupling of identification of the subsys-
tems, computational simplicity, and robustness against lack or incor-
rectness of a priori knowledge of the noise model. Moreover, for each
part of the system, the method is immune to possible errors in prior
knowledge of companion subsystem. These advantages are achieved at
the expense of a bit slower than the best possible convergence rate of
the obtained parameter estimates, which is a consequence of the leading
role of nonparametric regression estimation in the scheme and slower
convergence of nonparametric methods.

APPENDIX

A. Proof of Theorem 1

Denote AN = (�T
N �N )�1�T

N . Since by (2) in Assumption 1,
for each vector norm k � k and the induced matrix norm it holds that
kAN k � C , some C > 0, thus [see (7) and (13)] kĉN ;M � ck �
CkŴN ;M �WN k. By equivalence of vector norms, we get further
kŴN ;M � WN k � �kŴN ;M � WN k1, some � > 0, where

kxk1
4

= dimx

i=1 jx[i]j.
Consequently [cf. (11) and (12)]

kĉN ;M � ck � �C

N

n=1

(jR̂M(un)�R(un)j+ jR̂M(0)�R(0)j):

Hence

P fkĉN ;M � ck > "g

�

N

n=1

PfjR̂M(un)�R(un)j > "=2N0�Cg

+ N0PfjR̂M(0)�R(0)j > "=2N0�Cg (17)

for each " > 0. Since N0 is finite and by assumption jR̂M(u) �
R(u)j ! 0 in probability as M ! 1 for each u 2 f0; un;n =
1; 2; . . . ; N0g; we get the conclusion.

B. Proof of Theorem 2

Denote " = �M��=jdM j, any � > 0. From (17) in Appendix A, we
obtain

P jdM j kĉN ;M � ck =M�� > �

�

N

n=1

PfjdM jjR̂M(un)�R(un)j=M
�� > �=2N0�Cg

+ N0PfjdM jjR̂M(0)�R(0)j=M�� > �=2N0�Cg

which gives the conclusion.

C. Proof of Theorem 3

For each vector norm k � k, we have

k
̂N;M � 
k � k
̂N;M � 
̂Nk+ k
̂N � 
k: (18)

Since [11] k
̂N � 
k ! 0 in probability as N ! 1, it remains to
show that k
̂N;M � 
̂Nk ! 0 in probability as N;M !1, provided
that NM�� ! 0. Owing to equivalence of norms, we further use the
1-vector norm k � k1 as in Appendix A. Let

�N;M
4

=
1

N
�̂T
N;M�̂N;M �

1

N
�T
N�N

1;1

N;M
4

=
1

N
�̂T
N;M�̂N;M

�1

�
1

N
�T
N�N

�1

1;1

�N;M
4

=
1

N
�̂T
N;MYN �

1

N
�T
NYN

1

and, moreover, AN = ((1=N)�T
N�N )

�1; A = (E#1#
T
1 )
�1;

"N = 1=kANk1;1; rN;M = �N;M=("N("N � �N;M)) where
k � k1;1 is the matrix norm induced by k � k1, and let #nl
and #̂nl;M(n = 1; 2; . . . ; N ; l = 1; 2; . . . ; s + 1) be the ele-
ments of �N ; �̂N;M 2 RN�(s+1). Since #nl = w(n+s)�(l�1);

#̂nl;M = ŵ(n+s)�(l�1);M and

j#̂nl;M � #nlj � jR̂M(u(n+s)�(l�1))�R(u(n+s)�(l�1))j

+ jR̂M(0)�R(0)j (19)

thus owing to (15) and using the Banach inverse map theorem, we get
for M large

N;M � rN;M : (20)

In turn, because the wn’s are bounded, jwnj � a, some a > 0, by the
ergodic law of large numbers (e.g., [11, Lemma B.1]) "N ! �a in prob-
ability as N ! 1, where �a = 1=kAk1;1 [see (5) and Assumptions 1
and 3]. Further, after standard calculations we obtain

�N;M � (s+ 1)max
n;l

j#̂nl;M � #nlj
2

+ 2a(s+ 1)max
n;l

j#̂nl;M � #nlj

�N;M � b(s+ 1)max
n;l

j#̂nl;M � #nlj

as jyn+sj � b, some b > 0 [see (5) and Assumptions 1–4]. This yields,
respectively

Pf�N;M > "g �
n;l

P j#̂nl;M � #nlj >
"

2(s+ 1)

+
n;l

P j#̂nl;M � #nlj >
"

4a(s+ 1)
(21)

P (�N;M > ") �
n;l

Pfj#̂nl;M � #nlj > "=(b(s+ 1))g: (22)

Using Markov’s inequality, including (19) and the fact that
(by boundedness of R̂M ) for u 2 f0; u(n+s)�(l�1); n =
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1; 2; . . . ; N ; l = 1; 2; . . . ; s + 1g the rate (15) implies asymp-
totically EjR̂M(u) � R(u)j = O(M�� ), we observe that the
right-hand side of (21) and (22) is bounded by (23) and (24)

C(s+ 1)2( 2=("(s+ 1)) + 4a=")NM�� (23)

C(s+ 1)2(b=")NM�� (24)

some 0 < C <1. These two expressions tend to zero asN;M !1
for each " > 0, provided that NM�� ! 0. The latter along with (20)
concludes the proof [see (8) and (14)].

D. Proof of Theorem 4

It holds that (here k � k means the 1-vector norm k � k1 or, respec-
tively, the induced matrix norm k � k1;1 as in Appendix C)

k
̂N;M � 
̂Nk � N;M�N;M + N;MkbN � bk
+�N;MkAN � Ak+ d1 N;M + d2�N;M (25)

where N;M ; �N;M ; AN ; A are as in Appendix C and bN =
1
N
�T
NYN ; b = E#1y1; d1 = kbk; d2 = kAk. Owing to (21)–(24),

for M � N (1+�)=� ; � > 0, we get

�N;M = O(N��) in probability (26)

�N;M = O(N��) in probability: (27)

Including that rN;M = �N;M=("N("N��N;M)) (seeAppendix C) and
using (26), the rate "N = �a+O(N�1=2) in probability and Lemma 5
and 6 in Appendix E, we obtain rN;M = O(N�min(1=2;�)) in proba-
bility. In view of (20), this yields

N;M = O N�min(1=2;�) in probability: (28)

Now, considering that kAN �Ak = O(N�1=2) in probability, kbN �
bk = O(N�1=2) in probability along with (27) and (28), and taking
into account Lemma 5 in Appendix E, we conclude [see (25)]

k
̂N;M � 
̂Nk = O N�min(1=2;�) in probability: (29)

Since k
̂N � 
k = O(N�1=2) in probability, thus owing to (18),
(29), and using again Lemma 5, we obtain eventually k
̂N;M � 
k =
O(N�min(1=2;�)) in probability. Due to equivalence of norms, the
conclusion holds for each norm k � k.

E. Technical Lemmas

Lemma 5: If �N = O(aN ) in probability and �N = O(bN)
in probability then �N�N = O(maxfa2N ; b2Ng) in probability and
�N +�N = O(maxfaN ; bNg) in probability, where faNg; fbNg are
positive number sequences convergent to zero.

Proof: The inequality jajjbj � (1=2)(a2 + b2) implies
j�N�N j=maxfa2N ; b2Ng � (1=2)(�2N=a

2
N + �2N=b

2
N) which yields

P jdN j j�N�N j
max fa2N ; b2Ng

> "

� P jdN j j�N j
aN

>
p
" + P jdN j j�N j

bN
>
p
"

for each " > 0. Similarly, j�N + �N j=maxfaN ; bNg � j�N j=aN +
j�N j=bN and, hence

P jdN j j�N + �N j
maxfaN ; bNg > "

� P jdN j j�N j
aN

>
"

2
+ P jdN j j�N j

bN
>

"

2

each " > 0, which ends the proof.
Lemma 6: [15] If �N = � + O(aN) in probability, �N =

� + O(bN) in probability and � 6= 0 then �N=�N = �=� +
O(maxfaN ; bNg) in probability.
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